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Abstract— The increasing number of electric vehicles (EVs)
on highways calls for the installment of adequate charging
infrastructure. Since charging infrastructure has limited capacity,
EVs need to wait at a charging station to get charged, and
their waiting times may differ significantly from one location
to another. This paper aims at developing a strategy to coor-
dinate the queues among the charging stations, with only local
information about traffic flows and the status of EV charging
stations along a bidirectional highway, so that excessively long
waiting times can be avoided. Specifically, a distributed algorithm
is presented to schedule EV flows into neighboring charging
stations, so that EVs are all appropriately served along the
highway and that all the charging resources are uniformly
utilized. In addition, a distributed decision making policy is
developed to influence the aggregate number of EVs entering
any given service station, so that each EV makes an appropriate
decision (i.e., whether or not it should enter the next charging
station) by contributing positively to meeting the desired queue
length at service stations and by considering its own battery
constraint. Performance improvement of the proposed strategy
is illustrated via one of the highways in the United States, namely
the Florida Turnpike.

Index Terms— Electric vehicles’ charging, transportation
networks, distributed consensus algorithm, cooperative control,
dynamical systems.

I. INTRODUCTION

IT IS expected that by 2020 there will be not less than
3.1 million of electric vehicles (EVs) in use in the United

States [2]. The adoption of a large number of EVs can bring
many advantages in comparison to internal combustion engine
vehicles, including higher efficiency, lower carbon emission
and less pollution [3], [4]. However, EVs have a more limited
driving range (from 38 to 270 miles [5]) and, for long
distance travels, they need to be charged periodically along the
way. Therefore, the combination of the limited driving range,
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the long charging times (30 mins to 8 hours [2]), and the
customer’s satisfaction level when they wait for their EVs
to get charged may have a direct impact on decisions by
consumers to adopt the use of EVs in the future.

Numerous factors including installment of new charging
infrastructure, advances in battery and charging technology,
and development of smart (coordinated) charging strategy play
an important role in addressing the above challenges. This
paper focuses on the EVs’ charging scheduling problem, a
current topic of research, whose goal is to optimally utilize the
existing charging network or infrastructure by taking advan-
tage of information and communication technologies (ICT).
In particular, we study the scenario that along a bidirectional
highway there are a number of service stations equipped with
EV chargers. The chargers are located at service stations
(typically close to a set of entrances and exits) where EV
drivers would choose to charge their vehicles. It is obvious
that, while battery charging time depends only upon the
charger technology, waiting times of EVs at service stations
are highly dependent upon traffic flows and may become unac-
ceptably long with a local increase of EVs entering a given
service station. Without appropriate scheduling and coordi-
nation, utilization of the charging stations on the highway
may become very unbalanced since EV drivers do not have
adequate information to decide where and when to charge their
vehicles (e.g., each individual EV chooses randomly where
to charge their batteries). This calls for both a scheduling
algorithm of directing EV flows into service stations and a
distributed decision model to facilitate individual EV drivers
to make better charging decisions.

Literature review: Apart from studies on charging station
infrastructure planning (e.g., [6]–[8]), the EVs’ charging
scheduling problem has also received considerable attention
in the literature, see e.g. [9]–[26].

Qin and Zhang [22] propose a (centralized) scheduling
algorithm based on Dijkstras algorithm and by combining
both the transport and power grid information to find optimal
path for the EVs which improves the performance of the
grid and transport systems, namely relieving traffic congestion,
reducing power loss and optimizing load curve. Similarly,
a hierarchical game approach is presented in [25] for navi-
gation of EVs’ charging by taking into account the impact
from both the transportation and power systems and aimed at
improving the economic benefits of the charging stations and
the reliability of the power grid.

1524-9050 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



2714 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 18, NO. 10, OCTOBER 2017

Apart from the above results which consider both the
transportation and power systems, much of the literature on
EVs’ charging scheduling has focussed solely on the trans-
portation system for either urban or highway environments
with the goal of balancing the demand across the charging
network, reducing the queue length, or minimizing total travel
time and waiting time at the charging stations. For example,
the work in [20] proposes a dynamic charging assignment
method for the EVs to optimize the charging station utilization
and thus minimize the EVs’ waiting time. The algorithm is
computed via Simulated Annealing algorithm by a centralized
control platform. Li et al. [9] compare two charging station
selection algorithms based on local information of an EV
and global information obtained from a central server. It is
shown that utilization of global information on the charging
station workload helps improving the waiting time for the EVs.
A routing problem is solved offline and in a centralized manner
based on dynamic programming in [24] for EVs on a network
of charging nodes whose goal is to minimize the total traveling
and charging time. Coninx et al. [19] consider a scenario
where EV drivers inquire the central controller for advice
about specific charging station to choose and the relevant route
to use. The drivers are to find the best tradeoff between the
whole trip time, including waiting time at the charging station.
The problem is solved in a centralized manner using the global
information on the road traffic, location of charging stations
and their occupancy. An algorithm of directing EV flows
to charging stations is proposed in [12] to distribute the
charging load and to minimize queuing time by having the
EVs communicate with the transportation network.

Note that all the aforementioned results require global
network information and centrally computing algorithms.
Distributed EV charging and scheduling problem has recently
been investigated to a limited extent, and a few results are
now available. Bodet et al. [21] propose a distributed strategy
based on charging station reservation for scheduling the
EV’s charging so that the average waiting time is minimized.
First, it is proven under certain assumptions (e.g. each station
has equal charging capacity) that the waiting time is minimized
if utilizations of all stations are equal. Based on this insight, the
authors then propose a distributed method for locally balancing
distribution of charging demands in order to approximate the
system-wide distribution. A decentralized policy is designed
in [23] to assign EVs to a network of charging stations
with the goal of minimizing the queueing time. However, no
precise analytic guarantees on load balancing is provided.
Closer to our proposed method, Tan and Wang [26] propose a
distributed scheduling approach based on A* algorithm
and that makes use of charging station reservation
system aimed at minimizing the total travel time for
each EV.

It is worth noting that, in all the results of distributed
scheduling, there is no rigorous analysis or proof, and vali-
dation is done by simulation alone. In addition, the dynamics/
changes in the transportation system such as time varying
traffic flow are not explicitly considered in the design of the
algorithms. Recent survey of algorithms for EV’s charging can
be found in [27] and [28].

Statement of contributions: We propose an analytically-
proven algorithm to distributively schedule EV’s charging and
optimize the utilization of charging resources along a highway.

Our first contribution is the development of dynamical
model for average flow of EVs along the highway coupled with
queues at the service stations. The dynamical model is used to
design and investigate stability of the algorithm which adapts
to the changes of communication network (in connectivity
and delay) and transportation network (in flows and charging
equipment availability). In contrast to the mathematical model
of EV’s charging demand based on fluid dynamic traffic model
(represented by partial differential equation) in [29], our model
is an aggregated average model in the discrete time domain
and its simplicity/flexibility facilitates the analysis and design
of the scheduling algorithm with performance guarantee.

The second contribution is the development of a distributed
scheduling algorithm and a cooperative control algorithm for
EVs’ charging. In contrast to centralized algorithm where all
data for the optimization or control is collected at a central
aggregator which may require high-bandwidth communication
and thus pose a potential bottleneck and delay, distributed
algorithm is highly desirable due to its scalability (which
reduces the computational and communication costs) with
respect to the size of the EVs and charging network since
it only requires local knowledge about the system. In a
centralized system, the central aggregator is also vulnerable
to a single point-of-failure which may yield the collapse of
the whole system. Moreover, since for the case of centralized
algorithm all data including the one containing the privacy of
the EV drivers is collected at a central aggregator, the risk
of exposing the data to cyber-attacks is also increased. On the
other hand, distributed algorithm is robust to information inter-
mittency in both communication networks and transportation
network. For example, when a communication link between
the service stations is broken, the information can still be
transmitted using an alternative communication path which
makes the entire system remain functional.

The distributed scheduling algorithm is inspired by the
consensus algorithm and relies solely on information of local
traffic flows at the neighboring service stations. Its objective
is to schedule and direct the percentage of the EVs that enter
each station. Note that recently the consensus algorithm has
been applied to intelligent transportation systems such as for
controlling vehicle platoons for highway safety [30] or for
controlling traffic density in a highway network [31].

Based on the optimized number of EVs that should enter
each service station, a distributed algorithm of cooperative
control is used as the decision making algorithm by taking
advantage of local vehicle-to-infrastructure and vehicle-
to-vehicle communications. Specifically, this algorithm is
designed for each EV to determine whether or not to pass
a specific service station by taking into account its own
battery charge constraints while meeting the desired flow
level from the scheduling algorithm. The combination of the
two algorithms ensures a uniform utilization of the available
charging facility along the highway and in turn minimizes the
aggregate waiting time of all the EVs that need to be charged
as shown in [21].
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Fig. 1. A bidirectional highway segment with exit/entrance and service
station.

Note that our optimization objective is global in the sense
that it involves (explicitly) all charging facilities on the high-
way, in contrast to the work in [26] which considers the (local)
minimization of the performance of individual EV. Finally, in
comparison to the preliminary version of our work on this
problem [1], we propose in this paper a better distributed
scheduling algorithm together with an improved decision
making algorithm that preserves data privacy of each EV, and
we also provide extensive simulations using the real traffic
flow data from the Florida turnpike.

Organization: The rest of the paper is organized into
4 sections. In section II, discrete-time dynamic models are
presented to describe the average flow of electric vehicles
passing through the entrances/exits and entering the service
stations, the proposed scheduling and control problem of
electric vehicle charging is defined, and the objectives of
the proposed algorithms are prescribed. In section III, the
proposed consensus algorithm of distributed scheduling is
presented for the transportation network, and its properties are
rigorously analyzed. In section IV, the decision making algo-
rithm based on cooperative control is proposed for individual
drivers and studied. In section V, the Florida turnpike is used
as the case study, and its traffic flow data are used to evaluate
efficacy of the proposed algorithms. In section VI, conclusions
are drawn.

II. MODELING & PROBLEM STATEMENT

Highways, such as the Florida Turnpike, consist of a fixed
number of entrances/exits, service stations typically locate at
or close to a subset of these entrances/exits, and these stations
are upgraded to have EV chargers, which is illustrated by
figure 1.

In what follows, we first model the average flow of EVs
entering/passing through entrances/exits. Then, we choose to
use the M/M/c queueing model to describe the number of EVs
entering and waiting to be charged at service stations. These
models contain the decision variables for which optimization
and control problems can be formulated and solved. The
scheduling problem aims at uniform utilization of the charging
infrastructure within the transportation network, the problem
of intelligent decision making by individual drivers calls for

TABLE I

A LIST OF NOTATIONS

Fig. 2. A model of average EV flow at the ith extrance/exit.

coordination with the network and among drivers, and both
the problems need to be solved without requiring global
information. For the sake of readability, the notations used
in this paper are summarized in Table I.

A. A Model for Average EV Flow

Consider an one-direction traffic flow along the highway
segment, for example the northbound flow, and assume that
there are N nodes (which include both extrances and exits)
and they are numbered in an ascending order from south to
north, as shown in figure 1. Then, the following discrete-time
model in figure 2 can be used to quantify the average traffic
flow. That is, the average northbound vehicle flow αi (k) that
approaches the i th node is defined as

αi (k) =
{

γi (k), when i = 1

γi (k)+ yi−1(k − di−1,i ), if i �= 1
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Fig. 3. A queueing model for service station at node i .

where k is the unit time increment, γi is the net northbound
flow increase (due to vehicles entering node i from local
roadways through entrance/exit i ), yi−1(k − di−1,i ) is the
average EV flow coming from node (i−1) to node i , and di−1,i

denotes the travel time (of unit time increment) needed from
one node to the next. At time k, the northbound continuing
flow from the i th node can be calculated using

yi (k) = αi (k)+ gi (k)− fi (k), (1)

where gi(k) is the northbound flow coming out from service
station i , and fi (k) is the average flow entering the i th
service station. Should node i have no service station, we have
gi (k) = fi (k) = 0.

B. A Queueing Model for Service Stations

Let the number of EVs at service station i at time k be
denoted by xi(k) ≥ 0. The EV flow from the highway interacts
with queue state xi (k) at the i th service station according to
the following dynamics:

xi (k + 1) = xi (k)+ fi (k)− gi(k),

fi (k) = pi (k)αi (k), (2)

where pi(k) ∈ [0, 1] is the percentage (portion) of EVs that
approach the i th node and choose to enter its service station i .

Let ci be the number of EV chargers at service station i
which always serve from the front of its queue. As illustrated
by figure 3, an EV enters a service station by getting into the
charging queue there until one of charging stations becomes
open for it to use (i.e., first-come-first-served rule). Moreover,
we assume that the capacity for the EVs to queue is sufficiently
large.1 We utilize the stochastic model to analyze the queue
since the EVs arrival time and the service time at the station
are not known, i.e., random in general. Specifically, we model
the relationship between fi (k), μi (k) and xi (k) as an M/M/ci

queue, a standardized model for birth-death processes depicted
in figure 4. To be more precise, the M/M/ci queue as a
stochastic process has its states defined by the set ℵ =
{0, 1, 2, 3, · · · }. In other words, the queue is the Markov
process denoted by {xi (k) = l : l ∈ ℵ}. In this queue model,
the mean arrival rate of the EVs at service station i , denoted
by fi (k), is modeled as a Poisson process. The assumption
on Poisson arrival process for the EVs is appropriate (and
has been verified by experiments in [32]) since in general
the total number of vehicles on the highway is very large,

1Otherwise, another model could be used and that model can include the
impact on continuing traffic flow.

Fig. 4. Representation of a birth-death process for M/M/ci queue model.

a single EV uses a small percentage of highway and each
EV makes independent decision to enter the highway/service
station [33]. Moreover, the charging times (i.e., service rate)
is given by μi and has an exponential distribution, which
is confirmed for constant charging power by the commute
distance distribution in [34]. Note that the M/M/ci queue
model has also been widely used in the EV’s charging related
literature for purpose of analysis, see e.g. [12], [21], [25], [29],
[35]–[37]. The boundedness of the queue is guaranteed if the
following condition is satisfied at the steady state:

fi < ciμi (3)

namely, the steady-flow number of EVs entering charging
station i should be less than capacity of the station.

C. A Simple Energy Model of EVs

In general, the energy consumption of EVs depend on many
factors such as driving cycles [33]. However, for the sake of
simplicity in this paper we model the electricity consumption
of the vth EV as

e−v,i+1 = e+v,i − di,i+1r−v , (4)

where e−v,i+1 is the state of charge of the vth vehicle as it
approaches node (i +1), e+v,i is the state of charge as it leaves
node i , and r−v is the battery usage rate of the v-th vehicle.
Let uv,i ∈ {0, 1} be the decision variable for individual EV
and is defined as

uv,i =

⎧⎪⎨
⎪⎩

1 if vehicle v choose to charge at

service station i

0 otherwise.

(5)

When the vth EV departs service station i , its state of charge
status becomes

e+v,i = uv,i ev,max + (1− uv,i)e
−
v,i , (6)

where ev,max denotes the maximum capacity of its battery.
Models (5) and (6) assume that an EV will leave with a
full charge after entering a service station. Other models can
be accommodated similarly so that partial charging or earlier
departure can also be considered.

D. Distributed Scheduling and Cooperative Control

The objective of this paper is two-fold. The first goal is to
design decision variables pi (k) in (2) for each service station
so that the total charging demands are allocated equally across
the network. In other words, we aim to optimize operation of
highway network, namely all service stations on the highway
are uniformly utilized. Let xi (k)

ci μi
denote the utilization of
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Fig. 5. Distributed scheduling and cooperative control of EVs using
infrastructure-to-infrastructure (I2I), vehicle-to-vehicle (V2V), vehicle-to-
infrastructure (V2I) and infrastructure-to-vehicle (I2V) communication.

service station i . The problem can be mathematically stated
as to solve the following optimization problem:

min
pi (k)

[
max

i

(
xi (k)

ciμi

)
−min

j

(
x j (k)

c jμ j

)]
︸ ︷︷ ︸

=J

(7)

distributively using only the (local) information of
yi−1(k − di−1,i ), xi−1(k − 1), γi (k), xi (k − 1), and
xi+1(k − 1) from the neighboring service stations.

The second goal is to design a cooperative decision making
algorithm for individual EV, i.e., uv,i (k) in (6), to choose a
specific service station for charging by attempting to meet
the optimally scheduled flow level in (7) while taking into
consideration its own state of charge, which is illustrated by
figure 5. In addition, the policy should also guarantee the EVs
with low State-of-Charge (SoC) to receive first priority to be
charged at the nearest service station. In order to formulate
the problem, let Ni (k) be the set of EVs approaching the i th
service station and without loss of any generality, we assume
the size of the set |Ni (k)|=αi (k). Furthermore, let the solution
to (7) be given by p∗i (k). When approaching service station i ,
the EVs interact with neighboring EVs from the set Ni and
receive the information of p∗i (k) from the service station by
means of wireless communication as shown in figure 5. The
EVs negotiate with the neighboring EVs based on its battery
status to choose the best service station for it to get charged.
The problem can then be mathematically stated as to solve the
following optimization problem:

min
uv,i (k)

[
p∗i (k)−

∑
v uv,i(k)

αi (k)

]2

subject to e+v,i ≥ di,i+1r−v if i ∈ Ni (k),

uv,i(k) ∈ {0, 1}. (8)

The first constraint ensures that an EV will be charged at
service station i whenever it does not have sufficient energy
to reach the next service station.

III. CONSENSUS-BASED DISTRIBUTED

SCHEDULING ALGORITHM

In this section, we develop a scheduling algorithm to solve
the distributed optimization problem (7). To this end, note that

since xi (k) ≥ 0, we have J ≥ 0. The minimum of (7) is then
given by Jmin = min J = 0 obtained when

x1(k)

c1μ1
= · · · = xN (k)

cN μN
.

In other words, the cost function (7) is minimized when the
utilization xi

ci μi
reach a consensus for all service stations.

In fact, the cost function J in (7) also serves as a Lyapunov
function for the consensus protocol which will be presented
in section III-C [38]. Therefore, the optimization problem (7)
can be reformulated as to find p∗i (k) such that for all service
stations i ,

pi(k) = p∗i (k) �⇒ xi (k)

ciμi
→ η0(k). (9)

In the remainder of this section, using the steady state solution
of M/M/ci queue and for flow dynamics given in (1) and (2),
a consensus law is designed as the distributed solution to the
scheduling problem that needs to be solved at the service
stations. Moreover, we show convergence to a consensus
followed by stability analysis of its value.

A. Approximation of EV Flow Out Using Steady
State Solution of M/M/ci Queue

Before proceeding, we first need to derive the analytical
expression of EV flow out at service station i as a function of
the state xi . As described in section II-B, the charging service
at service station i is modeled by the M/M/ci queue with mean
arrival rate fi (k) and service rate μi . It is known that the
steady solution of xi (k) is equal to [39, p. 214]

xi = ρ
ci+1
i

ci ci !
1

(1− ρi/ci )2 ϕi,0 + ρi ,

ϕi,0 =
[ci−1∑

n=0

ρn
i

n! +
ρ

ci
i

ci !(1− ρi/ci )

]−1

, (10)

where ρi = fi/μi denotes the utilization of the chargers at
service station i .

Next, at the steady state we have from (2) that the out-
put flow from the service station is equal to gi = fi .
Substituting this into (10), the input-output relationship
between the dynamics (2) and the M/M/ci queue can be written
as

xi = gci+1
i

μ
ci+1
i ci ci !

1

(1− gi/μi ci )2 ϕi,0 + gi

μi
,

ϕi,0 =
[ci−1∑

n=0

gn
i

μn
i n! +

gci
i

μ
ci
i ci ![1− gi/(μi ci )]

]−1

. (11)

Note that an identical result to (11) is also obtained by apply-
ing the pointwise stationary approximation (PSA) method as
presented in [40]. Obtaining the analytical expression for
gi(xi ) from (11) is in general impossible. However, for the
case of a single charger, i.e., ci = 1, the steady state solution
simply reduces to

xi = gi

μi − gi
�⇒ gi = μi

xi

1+ xi
. (12)
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Fig. 6. Comparison between EV flow out function gi (xi ) in (11) and its
approximation ĝi (xi ) in (13): μi = 2 and ci = 4.

In order to derive the closed-form input-output solution
of gi (xi ) (which is necessary to proceed with the design and
analysis in the next subsection), in this paper we propose to
decouple a single M/M/ci queue into ci M/M/1 queues. Using
this idea and from (12), the input-output solution gi(xi ) to
equation (11) can then be approximated by

ĝi(xi ) = ciμi
xi

1+ xi
. (13)

We compare the solution (13) with the numerical solution
to equation (11) in order to evaluate whether the proposed
approximation is suitable, and the comparison is shown in
figure 6. It is obvious from figure 6 that the approximation
in (13) is suitable for analytical design. Note that due to the
over-approximation, as shown in figure 6, it is possible that
ĝi (xi) > xi when xi < ciμi which can be interpreted as all
EVs are leaving the station since the queue length is less than
the charging station’s capacity. In the simulation, a constraint
xi ≥ 0 is added as mentioned in Section II-B so that the queue
length will not be negative for this particular case.

B. Distributed Estimation Network of Total Charging Needs

Due to their constrained ranges, EVs need periodic charging
during their long-haul travels. Let βi (k) denote the average
number of charging required per vehicle for EVs passing
through node i at time k. The value βi (k) is computed using
the collected information at the i th node at time k including
their battery status in (4) and their distances to destination.
The total charging needs of the network is then given by∑N

j=1

[
β j (k)γ j (k)

]
. In the following we design an observer

for each service station to estimate distributively the total
charging needs of the network.

In order to gather locally information on charging needs,
when an EV enters the highway at node i and at time
t = kT , we assume that, with the help of vehicle-to-
infrastructure (V2I) communication [41], it will register itself
to be included in γi (k), as depicted in figure 5. Each node
then exchange information with their neighboring nodes by
the means of infrastructure-to-infrastructure (I2I) communi-
cation and implement the following observer to distributively

estimate the total charging need: for t ∈ [kT, (k + 1)T ),

η̇1 = ζ

(
−η1 +

[
2η1

3
+ η2

3

])

η̇i = ζ
(
−ηi+

[ηi−1

3
+ ηi

3
+ ηi+1

3

])
, i = 2, · · · , (N − 1)

η̇N = ζ

(
−ηN +

[
2ηN−1

3
+ ηN

3

])
, (14)

where ζ is the controller gain and

ηi (kT ) = N
[
βi (k)γi (k)

]
.

Observer (14) can be compactly written in the matrix form as

η̇ = ζ(−I + P)η, (15)

where η = [η1 . . . ηN ]T , I is the identity matrix and matrix P
is given by

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2

3

1

3
0 0 · · · 0

1

3

1

3

1

3
0 · · · 0

. . .
. . .

. . .

0
1

3

1

3

1

3
0

0
1

3

1

3

1

3

0
1

3

2

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

Observe that matrix P is row stochastic, column stochastic
and irreducible. The convergence of the proposed distributed
observer (14) is shown in the following lemma.

Lemma 1: By choosing the gain ζ ≥ 4
λ2δT where λ2 is the

second smallest eigenvalue of matrix (I − P) and 0 < δ < 1,
the total charging needs of the network can be estimated by
distributed observer (14). Mathematically, we have

ηi (kT + δT )→
N∑

j=1

[
β j (k)γ j (k)

]
.

Proof: It can be computed that the exponential conver-
gence rate of observer (15) is given by ζλ2 and its settling
time δT is equal to δT = 4(1/ζλ2). Since matrix P in (16)
is row-stochastic, column-stochastic and irreducible, we can
guarantee, by choosing the gain ζ ≥ 4

λ2δT for a pre-defined
0 < δ < 1, that observer (15) converges asymptotically to
a consensus, i.e., η(kT + δT ) → ao1, where 1 ∈ 
n is the
vector of 1s and ao = 1T η(kT )/N [38, ch. 5.2]. Therefore,
for all i ∈ {1, · · · , N} the distributed observer converges to
the total charging needs of the network.

Remark 1: The total charging needs can also be esti-
mated using the existing freeway traffic estimation algorithms,
e.g., [42], [43] which estimate traffic flow on the road segments
along the highway.

Based on the estimated total charging needs and via I2I
communication, the service station computes the consensus
value of the normalized queue, i.e., the value η0(k) in (9).
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C. Distributed Algorithm of Scheduling at Service Stations

In this subsection we describe the distributed scheduling
algorithm executed by each service stations along the highway
based on the idea of the consensus algorithm [38, ch. 5.2.4].
Specifically, the goal is to design pi (k) in (2) for each service
station so that

1) consensus is achieved as defined in (9),
2) all the EVs on the highway are charged at least at one

of the service stations.

To this end, by the means of I2I communication (see
figure 5), the service stations adjust pi (k) using the
information on the length of queue of their neighboring
stations according to

p∗1(k) = c1μ1

α1(k)

[
η0(k)

3
− 2x1(k)

3c1μ1
+ x2(k)

3c2μ2
+ g1(k)

c1μ1

]

p∗i (k) = ciμi

αi (k)

[
η0(k)

3
+ xi−1(k)

3ci−1μi−1
− xi(k)

ciμi
+

+ xi+1(k)

3ci+1μi+1
+ gi (k)

ciμi

]
, i = 2, · · · , (N − 1)

p∗N (k) = cN μN

αN (k)

[
η0(k)

3
− 2xN (k)

3cN μN
+ xN−1(k)

3cN−1μN−1
+ gN (k)

cN μN

]
(17)

where αi (k) denotes the number of EVs approaching the
i th service station and gi (k) is given by the approximation
in (13). Furthermore, the value η0(k) ≥ 0 in (17) which serves
as a leader can be computed from the following equation

N∑
j=1

p∗j (k)α j (k) = ηi ((k − 1)T + δT ) (18)

which shows that the total number of EVs entering the service
stations equals to the total charging needs.

The following theorem is the main result of the paper
which shows that consensus (9) is guaranteed.

Theorem 1: Under queue dynamics (2) and the distributed
scheduling algorithms (17), (18), all the charging stations
are uniformly utilized and all EVs are charged at one of
the service stations. Furthermore, the queues at all service
stations are bounded if and only if the total charging needs
is less than the total capacity of the service stations.

Proof: Let us define zi (k)
�= xi(k)/ciμi . First we show

that under (17), the consensus (9) is achieved. Substituting
ĝi (xi) in (13) into (2) results in

zi (k + 1) = zi (k)+ fi (k)

ciμi
− ciμi zi (k)

1+ ciμi zi (k)
. (19)

Furthermore, the following closed-loop dynamics is obtained
by substituting (17) into (19):

z(k + 1) = Pz(k)+ 1

3
[η0(k)1− z(k)], (20)

where z = [z1 . . . zN ]T . Since the matrix P in (16) is primi-
tive and row stochastic, it follows from [38] that system (20)
asymptotically reaches a consensus given by z(k)→ η0(k)1.

Next, we show further that by choosing η0(k) satisfying (18)
then all EVs are charged at one of the service stations. When
all EVs are charged, then the following constraint is satisfied

N−1∑
i=1

fi

⎛
⎝k −

N−1∑
j=1

d j, j+1

⎞
⎠+ fN (k) = βN (k)γN (k)

+
N−1∑
i=1

βi

⎛
⎝k −

N−1∑
j=1

d j, j+1

⎞
⎠γi

⎛
⎝k−

N−1∑
j=1

d j, j+1

⎞
⎠. (21)

Under update law (17) and assuming γi (k) is constant, at the
steady state the constraint (21) can be written as

N∑
i=1

f ∗i (k) =
N∑

i=1

βi (k)γi (k)

where f ∗i (k) = p∗i (k)αi (k) and which is equal to (18). Hence,
all the EVs are charged at least once at the service stations.

Finally, we prove that zi (k) is bounded if and only if the
total charging needs is less than the total capacity of the
service stations, which can be written as

ηi ((k − 1)T + δT ) <

N∑
j=1

c jμ j .

For showing the necessity (�⇒), first we observe that under
update law (17), when the queues are bounded we have
f ∗i (k) < ciμi for all stations i . Hence, we know that

N∑
j=i

f ∗j (k) <

N∑
j=1

c j μ j .

Combining the above inequality with (18) yields

N∑
j=i

f ∗j (k) = ηi ((k − 1)T + δT ) <

N∑
j=1

c jμ j .

We show the sufficiency (⇐�) by contradiction. Similar to
the previous case, when the queues are not bounded, under
the update law (17), we have f ∗i ≥ ciμi for all service
stations i . Hence, we have

N∑
j=i

f ∗j (k) ≥
N∑

j=1

c jμ j .

Combining the above inequality with (18) results in

N∑
j=i

f ∗j (k) = ηi ((k − 1)T + δT ) ≥
N∑

j=1

c jμ j

which completes the proof.
Note that from (17) and since xi (k)

ci μi
→ η0(k), we have

p∗i →
(ciμi )

2η0(k)

αi (k) [1+ ciμiη0(k)]
. (22)

Furthermore, at the steady state the following equality holds

N∑
j=1

(c j μ j )
2η0(k)

1+ c jμ jη0(k)
= ηi ((k − 1)T + δT )
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which shows the relation between the number of queues at
the steady state and the EV’s total charging needs. In the
following we provide some remarks regarding the proposed
distributed scheduling algorithm (17).

Remark 2: It is shown in the proof of the theorem that
the constraint (21) is satisfied at the steady state. The
constraint (21) can be rewritten as

fN (k) = βN (k)γN (k)

+
N−1∑
i=1

⎡
⎣βi

⎛
⎝k −

N−1∑
j=1

d j, j+1

⎞
⎠ γi

⎛
⎝k −

N−1∑
j=1

d j, j+1

⎞
⎠

− fi

⎛
⎝k −

N−1∑
j=1

d j, j+1

⎞
⎠
⎤
⎦.

The second term on the right hand side of the above equation
represents the total number of EVs which are not charged at
the previous (N − 1)-service stations. Therefore, during the
transient state, the last service station, i.e., station N projects
its control input p∗N (k) computed from (17) into the above
equality in order to guarantee that all the EVs get charged.
Furthermore, in practice when βi (k) > 1, the charging needs
βi (k)γi (k) are updated accordingly by considering number of
EVs that have been charged at some of the stations.

Remark 3: The value of η0(k) can be computed from (18)
in a distributed fashion. First, we can write from (17) that
f ∗i (k) = p∗i (k)αi (k) = aiη0(k) + bi where bi is computed
from the states xi (k)

ciμi
of the corresponding station and its

neighbors. The equality (18) can then be written as⎛
⎝ N∑

j=1

ai

⎞
⎠ η0(k)+

N∑
j=1

bi = ηi ((k − 1)T + δT ). (23)

Similar to (15), the service stations execute the following
observer:

ȧ = ζ(−I + P)a, ḃ = −ζ(−I + P)b,

where a = [a1, · · · , aN ]T (resp. b = [b1, · · · , bN ]T ) and
initial conditions ai (0) = Nai (resp. bi (0) = Nbi ). As shown
in lemma 1, for all service stations i the states will converge to
ai → ∑N

j=1 ai and bi → ∑N
j=1 bi respectively. Hence, each

service station can compute η0(k) from (23) independently.
Remark 4: It is worth to note that under the update

law (17) the condition the total charging needs is less than the
total capacity of the service stations is necessary and sufficient
for the queues to be bounded. This is due to the nature of
the consensus based update law (17) which forces the service
stations to equally utilize their capacity and thus the chargers
at each station can be used close to its limit capacity.

Remark 5: Consensus is also achieved under (17) for
different queue model and its stability can be analyzed using
the corresponding stability condition similar to (3).

IV. COOPERATIVE CONTROL OF EVS’ CHARGING

In this section, we design a cooperative control uv,i(k)
in (6) for each EV by solving distributively optimization
problem (8). In other words, the objective is to achieve the

optimally scheduled percentage of EVs to be charged at
every service station given by the aforementioned scheduling
algorithm (i.e., the solution to optimization problem (7))
while meeting its own state-of-charge constraint, as depicted
in figure 5.

The EVs, through their local computation, solve
optimization (8) in a distributed manner by negotiating among
themselves based on their state of charge and by using vehicle-
to-vehicle (V2V) communication. To this end, the communica-
tion network among the EVs moving toward the same service
station needs to be connected (or facilitated by infrastructure
via V2I and I2V communication). To be more precise, each
EV is only required to exchange information locally with its
surrounding EVs such that all EVs moving toward the same
station are connected, i.e., the information from every EV can
(indirectly) propagate to any other EVs. When approaching
service station i , the EVs closest to the station will receive
the information on p∗i (k), di,i+1 and αi (k) transmitted by the
i th service station with the use of infrastructure-to-vehicle
communication. Each EV belonging to the set Ni (k) with
|N i (k)| = αi (k) then utilize this information to compute inde-
pendently the number of EVs entering service station i , i.e.,
ui

total(k) which is the solution to the following optimization

argmin
ui

total (k)

(
p∗i −

ui
total(k)

αi (k)

)2

.

Next, each EV check their residual battery level e−v,i and set
their control input uv,i (k) = 1 if e−v,i < di,i+1r−v , i.e., when
they cannot reach service station (i+1) without getting charge
at the i th station. Let si denote the number of EVs that cannot
reach the next station without getting charge at station i . Note
that the value si can be computed distributively via a consensus
algorithm as described in the previous section. Without loss
of generality, it is assumed that the drivers fully charge
their batteries at the service station. The normalized required
energy for the EVs until they are fully charged is then equal to

er
v,i = 1− e−v,i

ev,max
.

The rest αi (k) − si EVs then exchange their er
v,i values

with their neighbors and sort them in an ascending order
distributively, for example using the method proposed in [44]
and [45]. As a final step, the EVs with (ui

total(k) − si )th
largest value of er

v,i set their input uv,i(k) = 1. The reason
why the EVs do not exchange their current energy level e−v,i
is because the information may reveal the charging habit of
the owners. Moreover, in combination with the information
on battery capacity, the average speed of the EVs on the
highway and by assuming that the owners fully charged
their batteries before departing to work, private information
such as the residential location of the EV’s owner may also
be estimated and exposed. On the other hand, exchanging
the values of the required energy er

v,i provides a better
way to preserve or hide this private information since the
drivers do not necessarily fully charge their batteries at the
service station. The pseudo-code of the algorithm is given in
algorithm 1. Note that the decision whether an EV should
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Algorithm 1 Distributed algorithm to solve optimization (8)
Require: p∗i , αi (k), di,i+1 broadcasted by the service stations,

a strongly connected communication topology between the
EVs.

1: for k = 1, 2, . . . , T f inal do
2: for i = 1, . . . , N do
3: set Si = {}
4: for v = 1, . . . , αi (k) do

5: ui
total(k) = argmin (p∗i − ui

total (k)

αi (k) )2

6: compute battery status e−v,i
7: if e−v,i < di,i+1r−v , i ∈ Ni then
8: set uv,i(k) = 1
9: Si ← v

10: end if
11: end for
12: set si = |Si |
13: compute normalized required energy

er
v,i = 1− e−v,i

ev,max

14: rank er
v,i distributively in an ascending order for v /∈ Si

using the method in [44] and [45]
15: set uv,i(k) = 1 for (ui

total(k)− si )th largest er
v,i

16: end for
17: end for

be charged at a given service station can be implemented,
e.g., as a recommendation to the driver, in existing in-car
navigation technologies or as an app. in a smart phone.

Remark 6: The number of EVs at the service station as a
result of algorithm 1 may not always match the ones computed
by distributed scheduling algorithm (17). This is either due to
the uncertainty of the arrival/flow of EVs at the service station
which influences the queue, or the first constraint in (8) cap-
tured by βi (k) in (17), or the stochastic nature of the driver’s
decision making. Such an uncertainty could be modeled as a
(bounded) perturbation injected into dynamics (20). Note that
since distributed scheduling algorithm (17) is performed in real
time, the value η0(k) will be adjusted accordingly by taking
into account the uncertainty of xi (k) at each station. If the
total charging needs is less than the total charging capacity of
the service stations and since the perturbation is bounded, the
value η0(k) will remain bounded as shown in theorem 1. As a
result, the states xi (k)

ci μi
will attempt to track the value of η0(k),

will reach consensus whenever η0(k) converges, and will stay
bounded around η0(k) when η0(k) oscillates. Mathematically,
the closed-loop dynamics (20) under bounded uncertainty
w(k) ∈ R

N with ‖w(k)‖∞ ≤ w can be written as[
η0(k + 1)
z(k + 1)

]
=
[

1 0
1
3 1 P − 1

3 I

] [
η0(k)
z(k)

]
+
[

0
w(k)

]
. (24)

It is shown in [38, Lemma 5.31] that the states z(k) in (24)
remains bounded given that η0(k) is bounded.

V. SIMULATIONS
In this section, we demonstrate and compare the

performance of the proposed distributed scheduling using two

Fig. 7. The map of entrances/exits and service stations on Florida Turnpike.
The circles represent entrances/exits and the rectangles represent service
stations. The numbers above the arrows represent the distance (in minutes
increments) between two consecutive nodes and the numbers in the circles
denote the label of the entrances/exits and service stations.

different simulation examples on the Florida Turnpike, which
is one of the highways in the United States.

Consider a Florida Turnpike consisting of 69
entrances/exits, i.e., N = 69 including 8 service stations as
depicted in figure 7. The distances (in minutes increments)
between the entrances/exits are summarized in figure 7 where
it is assumed that the average velocity of the vehicles on
the highway is equal to 60 miles/hour. For the sake of
visualization and comparison, it is assumed that the EVs only
need to be charged once along the highway, i.e., βi (k) = 1
for all i . This is a realistic assumption since it is reported
in [46] that EVs were charged 1.46 times per vehicle day
driven on average. In addition, the simulation is performed
for sampling time �T equal to 20 minutes for both the
(physical) transportation and communication networks. We
also assume that at the beginning of the day there are no EVs
queueing at the service stations, i.e., xi (0) = 0 for all i .

A. Algorithm Applied to Simulation Data

We first apply the proposed distributed algorithm to
a constant traffic flow data where we set γ14(k) = 4,
γ36(k) = 6, γ54(k) = 2 and γi (k) = 0 for i �= {14, 36, 54}.
Furthermore, it is assumed that the six fast chargers are
installed at each of the four service stations, namely c29 =
c48 = c50 = c60 = 6 and μ29 = μ48 = μ50 = μ60 = 2 EVs/h.
The simulation result is shown in figure 8a. As can be seen
from the figure, all the four charging stations are uniformly
utilized. Specifically, the consensus-based algorithm allocates
equal number of EVs to each service station since all service
stations have the same capacity as can be seen from figure 8b.

Next, we compare the performance of the proposed
distributed scheduling algorithm for two different
communication structures as illustrated in figure 9. To this end,
we consider the case of four charging stations as before and
assume that γ14(k) = 12 and γi (k) = 0 for i �= 14. Distributed
algorithm corresponding to communication structure shown
in figure 9a is given in (17). In addition, we modify (17) to
incorporate the communication topology depicted in figure 9b
where each charging station also receives information on the
length of queues from the stations which are not its direct
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Fig. 8. Simulation results under the proposed consensus-based scheduling algorithm for constant traffic flow γ14(k) = 4, γ36(k) = 6, γ54(k) = 2 with
c29 = c48 = c50 = c60 = 6 and μ29 = μ48 = μ50 = μ60 = 2 EVs/h. (a) Utilization of service stations. (b) Number of EVs entering service stations.

Fig. 9. Communication topologies of the service stations.

neighbors. The results are shown in figure 10. As can be
observed from the figure, distributed algorithm based on both
topologies result in the same utilization value at the steady
state and the equal number of EVs are entering each service
station. Furthermore, it can be seen that the topology given
in figure 9b yields a better transient performance (i.e., the
difference of utilization between the charging stations are
smaller) in comparison to the communication topology in
figure 9a. The result is intuitive since the charging stations in
figure 9b receive more information than the ones in figure 9a.

B. Algorithm Applied to Real Florida Turnpike Data

Next, we utilize the real traffic data (per hour) obtained
from Regional Integrated Transportation Information
System (RITIS) database, namely the vehicles’ net average
flow at entrances/exits (nodes) 1 and 5 of the Florida turnpike,
i.e., γi (k) = 0 for all i �= {1, 5} within 24 hours as depicted
in figure 11. As can be observed, the traffic flow between 8-9
AM and between 6-8 PM are relatively higher than the rest
of the day since during this two time frame, people are going
to their work and going back home respectively. In addition,
it is assumed that the EVs penetration rate is equal to 2% of
the total vehicles’ net average flow.

Currently, there are in total 12 units Tesla superchargers
with charging time approximately 30 minutes installed along
the highway, specifically 6 units each at the Fort Drum Service
Plaza (node 50) and Turkey Lake Service Plaza (node 60)
respectively [47]. Hence, we set c50,= c60 = 6 and μ50 =
μ60 = 2 Evs/h and ci = 0, μi = 0 for i �= {50, 60}.
For this particular simulation, the proposed consensus-based
distributed scheduling algorithm is compared with an alter-
native strategy without any coordination/cooperation between

the service stations. We call this alternative strategy as State-
of-Charge (SoC)-based random strategy which employs the
information on the battery’s SoC of the EVs when approaching
the service station. In this strategy, we first assigned a SoC
threshold for charging given by St . When an EV approaching
the i -th service station, it will check whether its SoC is below
the threshold St . If its SoC is below St , then the driver will
recharge the battery at the i -th station, i.e., pi(k) = 1. Other-
wise, the percentage pi(k) is given by a uniformly distributed
random number, i.e., the EVs randomly decide whether to
charge at station i . For the simulation, we set the SoC threshold
St equal to 30% of the maximum SoC. This strategy is
consistent with the findings in [46] where it is reported that
most drivers charge their EV’s battery when it is nearly
fully depleted. Hence, the SoC based random strategy can
approximately model the charging behavior of the EV’s driver
in the absence of any coordination (thus it is decentralized
in nature). Note that a strategy similar to SoC-based random
strategy is also employed in [22] for evaluating their algorithm
where it is assumed that the EV’s driver will choose the closest
station when the SoC is below 30%. The authors in [26] also
use a similar strategy, namely EVs will charge at the last
station where they are able to reach, to compare and evaluate
their charging algorithm. We perform monte carlo simulation
(1000 trials with random initial SoC) for the SoC-based
random strategy whose (average) result is shown in figure 12a.
As can be seen, there is a large difference of utilization
between the two service stations since no information of the
current queue length of the neighboring station is used for
deciding whether to charge at a specific service station. Next,
we apply the proposed consensus-based scheduling algorithm
whose result is illustrated in figure 12b. As can be observed,
the consensus algorithm tries to allocate the EVs along the
highway such that both service stations are uniformly utilized
by using the information on the real time queue length at the
neighboring stations. The number of EVs entering each service
stations is illustrated in figure 14b. It is interesting to note that
similar results on uniform utilization of charging stations are
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Fig. 10. Simulation results under the proposed consensus-based scheduling algorithm for different communication topologies and constant traffic flow
γ14(k) = 12 with c29 = c48 = c50 = c60 = 6 and μ29 = μ48 = μ50 = μ60 = 2 EVs/h. (a) Consensus-based algorithm for topology in figure 9a.
(b) Consensus-based algorithm for topology in figure 9b.

Fig. 11. Vehicles’ net average flow entering nodes 1 and 5 per hour
for 24 hours based on RITIS database. (a) Consensus-based algorithm for
topology in figure 9a. (b) Consensus-based algorithm for topology in figure 9b.

also observed via simulations in [26] where the objective is
to minimize the total travel time of individual EV and in [22]
where the authors aimed at reducing the road congestion.

Finally, we perform the simulation when both service sta-
tions have different number of charges available. Specifically,
we set c50 = 5 and c60 = 7 (note that the total charging
capacity in the network remains the same). The simulation
results by applying the SoC-based random strategy is depicted
in figure 13a. The queues at both service stations vary signif-
icantly since most of the EVs decided to charge at the first
station and no coordination is taken place. We improve the per-
formance of the charging network by applying the consensus-
based distributed scheduling algorithm whose result is shown
in figure 13b. It can be observed that the proposed algorithm
results in a uniform utilization of the service stations in spite
of the heterogeneity of their capacity. Specifically, based on
the information of the neighboring service stations’ queues,
the EVs are allocated “proportional” to the capacity of each
service station as can be seen from figure 14b where the ser-
vice station with more capacity takes more EVs to be charged.

TABLE II

ROOT MEAN SQUARE (rms) OF THE DIFFERENCE BETWEEN

BOTH SERVICE STATIONS’ UTILIZATION

TABLE III

COMPARISON OF TOTAL WAITING TIME Ti (IN MINUTES)

In order to further evaluate the performance improvement
of the proposed strategy we also compute the root mean
square of the difference between both service stations’
utilization given by (setting T f inal = 72)

rms =
√√√√ 1

72

72∑
k=1

(
x50(k)

c50μ50
− x60(k)

c60μ60

)2

and the results are summarized in table II. As can be seen
from the table, the proposed algorithm yields a lower value
of root-mean-square compared to the SoC-based random
strategy. Moreover, we also compare the total waiting time for
the EVs at each station. From Little’s law formula, the total
waiting time at the i th station Ti can be computed as [48]:

Ti = �T

(∑
xi (k)∑
fi (k)

)
.

Since additional time caused by the traffic congestion, i.e.,
driving time is assumed to be constant, the total waiting
time is then equal to the increase of total travel time for the
vehicles. It is interesting to note that, as discussed in [22],
the uniform utilization of the service stations also results in
the reduction of traffic congestions. The total waiting time for
both the proposed strategy and SoC-based random strategy
are summarized in table III. As can be seen from the table,
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Fig. 12. Utilization of service stations for real Florida turnpike data with c50 = c60 = 6 and μ50 = μ60 = 2 EVs/h. (a) SoC-based random charging strategy.
(b) Consensus-based scheduling algorithm.

Fig. 13. Utilization of service stations for real Florida turnpike data with c50 = 5, c60 = 7 and μ50 = μ60 = 2 EVs/h. (a) SoC-based random charging
strategy. (b) Consensus-based scheduling algorithm.

Fig. 14. Number of EVs entering the service stations for real Florida turnpike data and by applying the proposed consensus-based scheduling algorithm.

the proposed strategy results in an (approximately) equal
total waiting time for both service stations. Furthermore,
the maximum total waiting time for the proposed strategy is
lower than the random strategy.

C. Evaluation of Proposed Algorithm for Different Parameters
In the following we evaluate the performance of the

proposed algorithm for different parameters, namely different
type of chargers and sampling time. First, we consider the case
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Fig. 15. Utilization of service stations for real Florida turnpike data with μ50 = μ60 = 1 EV/h. (a) c50 = c60 = 6. (b)c50 = c60 = 10.

Fig. 16. Utilization of service stations for real Florida turnpike data for different sampling time. (a) �T = 10 minutes. (b) �T = 5 minutes.

where both service stations are equipped with chargers whose
charging time is equal to 1 hour per EV while the number of
chargers at each station c50 = c60 = 6. As can be seen from
figure 13b, even though the service stations are uniformly
utilized, the queues increase over time and become unbounded.
This is because the number of EVs entering each station is
larger than the capacity of the service station at most of the
time. Next, we increase the number of charger at each station
to c50 = c60 = 10. As a result, the queues at each service
stations remain bounded as can be observed from figure 15b.
Hence, for charger with charging time equal to 1 hour per EV,
we require more chargers compared to the fast charging case
in order to keep the queues at each service station bounded.

Finally, in order to study the sensitivity of the proposed
algorithm with respect to the time k (or sampling time �T )
we simulate the proposed algorithm for different sampling
time (updated time), namely �T = 10 minutes and
�T = 5 minutes respectively. It can be observed from
figure 16 that the choice of �T impacts the utilization
value xi

ci μi
of the service stations. However, as can also be

observed from the figure, the average length of queues at the

service stations, i.e., xi are about the same at a particular
time of the day for different sampling time �T . In practice,
the size of �T should be chosen depending on the traffic
condition (e.g., volume of EVs on the highway). In addition,
it is worth noting that in the paper we consider the worst case
that communication is sampled at a slower rate (i.e., equal
to the sampling rate of the transportation network). However,
in practice the communication can be sampled at much faster
rate depending on the traffic congestion or EVs speed, i.e.,
the consensus algorithm can be run asynchronously. This
implies that the value η0(k) changes between the samples of
the transportation/traffic model which makes the scheduling
algorithm become more sensitive to the changes of traffic
flow, i.e., the transient behavior.

VI. CONCLUSION

In this paper, we have developed a strategy consisting of
a distributed scheduling algorithm and a cooperative control
policy for individual EVs which optimize the operation
of the overall charging network on a highway. First, a
consensus-based distributed scheduling algorithm is presented
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which uses local information from the neighboring service
stations and is designed so that all the charging stations
are uniformly utilized. Next, we develop a negotiation
strategy among the drivers by means of the V2V and V2I
communications and based on their current battery level in
order to meet the published scheduling level. It is confirmed
from simulations that the proposed strategy improves the
overall system performance compared to the SoC-based
random strategy. It should be noted that by using graph
theory (with nodes and edges represent entrances/exits/service
stations and roads respectively), the highway transportation
network studied in this paper can be extended to general
road networks. Future research can be done to incorporate
traffic congestions into the model, consideration of price-
based strategy (game-theoretic approach), installment of
new charging infrastructure including additional batteries for
replacement to further reduce the total waiting time, control of
traffic congestions by the adjustment of the maximum speed
limit for the EVs, and performance analysis of the proposed
distributed strategy under communication failures or delays.
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